@ systinet”

A Practical Guide to SOA
for IT Architects

@ systinet”

A Practical Guide to SOA for IT Architects

A Practical Guide to SOA for IT Architects
A Systinet White Paper

Copyright © 2005 Systinet Corp. All rights reserved. The document is not intended for production
and is furnished as is without warranty of any kind. All warranties on this document are hereby dis-
claimed including the warranties of merchantability and fitness for a particular purpose.

Trademarks
Systinet™ and the Systinet logo are trademarks or registered trademarks of Systinet Corporation.

All other company, product and brand names are trademarks of their respective companies.
December 2005

Systinet Corp. One Van de Graaff, 5th Floor Burlington, MA 01803 Phone: 1.781.362.1300
www.systinet.com

Copyright 2005, Systinet Corp. Page 2 of 14

A Practical Guide to SOA
for IT Architects

Contents

Executive Summary

The Business Value of SOA ...
Key SOA Design Considerationsccoouuee...

Creating Your SOA Foundation:

The Business Service Lifecycle ...
Planning
Enablement
Publishing
Discovery
Management and Security ...
Analysis

Copyright 2005, Systinet Corp.

© 0 00 3N

©

@ systinet”

Business Service Lifecycle Planner 10

Business Services Registries Enable
Lifecycle Management

The Evolution To SOAeeerneemsssseensens 11

Appendix A:
Web Services Enablement Platforms 12
Examples of Web Services

Enablement Platforms . 12
Appendix B: SOA Definedveeeersneens 12
Appendix C: GIOSSArYrmmsmsessusssessssnnes 13
About Systinet Corporationeenennee 14

Page 3 of 14

A Practical Guide to SOA for IT Architects

Executive Summary

As a strategy for creating a flexible and agile IT, service-oriented architec-
ture (SOA) has gained considerable momentum in recent years, largely
due to the advent of standards-based Web services. There are some
powerful business drivers for implementing SOA today:

» IT Agility and Lower Costs
SOAs make IT more responsive to changing business demands and
requirements. Reconfiguring business services is simple, fast and low-cost.

» Maximizing Enterprise Application Investments
SOAs are not a rip-and-replace strategy—they wrap and reuse busi-
ness functions from existing enterprise applications and make them
available to a significantly broader audience without change. SOA
encourages reuse and avoids unnecessary duplication and reinvention.

v

Facilitating New Applications

Web service-based SOAs smooth the development and management
of composite applications. Composite applications improve business
performance by pulling together information from multiple applications
without complicated and time-consuming IT processes.

v

Standards—Foundation for the Future

SOAs that use standards-based components and interfaces provide
ubiquitous interoperability with all applications and services, making IT
more flexible and dramatically simplifying integration.

This paper discusses how to capitalize on the advantages of SOA by
adopting an enterprise foundation for SOA governance and business
service lifecycle management. The paper presents a management
framework for enterprise architects and acts a guide for implementing
an SOA. In addition, it reviews the technical, organizational and
process issues involved, and offers recommendations on building an
SOA infrastructure.

The Business Value of SOA

SOA is an architectural style for maximizing application interoperability,
sharing and reuse in a distributed environment. Service orientation is not
a new approach to software development—implementations of object-
oriented design, message-oriented middleware, and component-based
development have all been guided by many of the same principles.

The widespread adoption of Web services standards has reinvigorated
the service-oriented approach by providing a universally accepted set of
interoperability standards for building, describing, cataloging and manag-
ing reusable services. Earlier models required systems to adapt to propri-
etary software interfaces or to implement complex standards that failed
to garner industry support. [Web services technologies, protocols and
platforms are discussed in Appendix A]

As an example, message-oriented middleware provides a basis for an
enterprise architecture composed of services designed to interoperate
based on well-defined messages transmitted across well-defined mes-
sage queues. However, this approach requires all systems in the architec-
ture to support the binary message formats and protocols of the messag

Copyright 2005, Systinet Corp.

@ systinet”

ing provider, and involves major rework to change providers or even to
upgrade between versions of a single product.

In a Web services environment, these same services communicate using
standard protocols and formats supported by multiple vendors. Messages
are XML documents described using standard XML schemas. Service
interfaces are defined using WSDL definitions and implemented using
SOAP messaging, with additional functionality provided by the layered
WS-" standards. Changing technologies or versions is simplified by the
lightweight nature of the standards and the overwhelming adoption of
Web services standards by technology vendors and corporate developers.

SOAs have some distinct advantages over other architectures. First, inter-
operability is an innate characteristic of a service-oriented approach. As
described in the example above, SOAs built using Web services support
service integration based on universally accepted industry standards.
When interoperability is an inherent characteristic of all IT systems and
purchased software, the problem of application integration becomes
moot. Organizations no longer need to invest inordinate amounts of time
and resources on projects that connect applications, freeing the IT team
to focus on providing new business functionality.

Second, SOAs make enterprise applications more agile and more respon-
sive to changing business demands. By keeping IT focused on projects
that provide business value rather than technical interoperability and
upgrades, SOAs allow teams to quickly respond to business initiatives.

Gone are the days where no one is available to respond to business
change because they are working on the latest middleware upgrade or
adapter projects. Coarse-grained interfaces to functionality allow busi-
ness analysts and stakeholders to better understand the functionality
available to them, and loosely coupled services allow them to freely com-
pose services into applications with minimal IT involvement.

Freed from the technical minutiae of your chosen platforms, with an
empowered base of business analysts and stakeholders, the IT team can
think in terms of business functions and react quickly to changing busi-
ness demands, requirements or processes.

Key SOA Design Considerations

As your organization begins the SOA planning, development and deploy-
ment process, there are a number of things to bear in mind. IT architects
should consider the following issues as they approach an OA rollout:

Plan for Incremental Deployment

Unlike many architectural initiatives, an SOA can be deployed incremen-
tally and still show business value. A project that must integrate multiple
systems implemented with different technologies is an ideal place to start
an SOA initiative and quickly demonstrate value.

For example, if you're developing a new VB.NET desktop application that
must make use of business rules that were implemented for an earlier
J2EE application, you can use Web-services technologies to enable the
new application to directly consume business services provided by the

Page 4 of 14

A Practical Guide to SOA for IT Architects

N
The Stages in SOA Adoption

Systinet defines three stages of evolution to a service-orient-
ed architecture.

Phase One: Web Services Enablement

This is a tactical implementation of Web services where exist-
ing applications have standard Web services interfaces.
Replacing proprietary APIs reduces integration complexity for
these applications. These developer-driven implementations
have modest returns on investment in the short term.

Phase Two: Business Services Enablement

Success with simple Web services encourages a systematic,
enterprise-level approach in the next phase. This architect-
driven phase requires added visibility, compliance, governance
and manageability to transform Web services into business
services with a focus on reuse. The primary benefit of reuse is
increased alignment to business, and consequentially,
improved agility to facilitate business change. Impact analysis
and reporting are key outcomes.

Phase Three: Dynamic Interoperability

The desire to support composite applications and agile or “on-
demand” computing drives this phase, which is characterized by
a concept Systinet calls Dynamic Business Interoperability. Here
the Web services platforms are able to create more intelligent
business services (i.e, endpoints) with support for advanced
security, reliable messaging, and policy enforcement. Then, by
managing business services using high-level business and
application definitions called metadata, change to IT or busi-
ness processes can be dynamically managed, further increas-
ing agility and dramatically lowering operational costs.

Copyright 2005, Systinet Corp.

@ systinet”

J2EE application. If you also need to implement the system with pack-
aged applications such as SAP, you may find that the software provider
has already developed Web service interfaces that you can exploit. If you
must introduce logic that exists in other legacy systems written in C++ or
residing on a mainframe, you can wrap these systems as Web services
and exploit their high-level business logic without implementing adapters
or relying on low-level APls.

By wrapping your existing functionality as Web services, you're minimizing
your project-level integration effort and contributing to the evolution of your
SOA with the same resources required to make the project a success.

Focus on Interoperability

Innate interoperability is a key benefit of SOA. Initially, you should focus
on standardizing message payloads with XML schemas, describing
operations using WSDL service descriptions, and implementing a
Business Services Registry. This will allow you to control the evolution of
your SOA by specifying services, operations and data types, using the
registry to verify that each implementation follows the standards. It also
reduces the reimplementation of common services by making teams
aware of what services are being developed elsewhere and how they can
be used.

As your SOA encompasses more and more mission-critical processes,
you should identify higher-level standards for non-functional require-
ments such as security, reliability, transactional integrity, monitoring and
management, as well as load balancing and service provisioning.

Standards

SSL, WS-Security,
XML Encryption, XML Signature

WS-Addressing,
WS-ReliableMessaging

WS-Transaction
SNMP, WS-DistributedManagement

WS-Addressing, SPML,
WS-Provisioning

Some of these standards will already exist in your architecture. Some of
the newer standards can be implemented in hardware, but most will be
provided in software running at your Web services endpoint. Be wary of
centralized solutions for implementing Web services standards, as they
can limit your system agility and require allocating resources to maintain
these single points of failure.

As you identify standards and define policies for these additional require-
ments, your Business Services Registry provides the infrastructure for a
robust governance model to ensure that these standards are employed
in the services as part of your SOA. By defining your policies using the
WS-Policy framework, you can ensure at the service endpoint that they
are followed.

Page 5 of 14

A Practical Guide to SOA for IT Architects

Focus on Business Agility

Business and IT agility should always be the primary and overarching goal of
your SOA strategy. As your SOA evolves, IT systems begin to mirror business
processes, making it easier to map business change to system change.

SOA infrastructure makes it easier to implement IT change because sys-
tems are composed of loosely-coupled business services that depend only
on well-defined discrete interfaces, preventing side-effects and internal
dependencies that hinder component reuse. Changes to services should
not cause connections between services to fail, allowing processes to be
quickly reconfigured without changes to service implementations.

For example, if your payroll processing system is dependent upon a busi-
ness service defined by your 401(k) provider, it should interact with that
provider only through clearly defined service boundaries with no depend-
encies between the service implementations. This will allow your business
to switch plan providers without changes cascading deep into your payroll
logic. If your 401(k) provider uses industry-standard XML schema and
service interfaces, you may be able to change your provider with no
impact on the underlying payroll system.

The business services that compose an SOA represent a coarse-grained
view of IT or application assets—i.e, with services defined around high-
level business concepts rather than low-level technical details. This allows
business analysts to easily understand and work with business services
to implement change without turning to IT. With analysts and business
unit developers making use of these higher-level services to adjust to
business changes, the IT team is freed to work on building more and
more services that deliver direct business value to multiple stakeholders.

Recognize the Registry’s Critical Role in SOA

The basic SOA model is defined by interoperable service providers and
service consumers teamed with a Business Services Registry.

Providers and Consumers use services in the SOA according to prede-
fined business policies. The Business Services Registry provides a system-
of-record for these policies, and is used to define and enforce business
policies. The registry is employed proactively to define the interfaces and
policies for individual services before they are implemented, and reactively
to verify that project teams are publishing services to the registry that
adhere to the policies you have established. At the project level, teams dis-
cover the policies required to interoperate with a service before they work
with it. This prevents the confusion and schedule slips that are common
when the requirements for interoperability are poorly understood.

Beyond these baseline considerations, other issues will become

important as the SOA is incrementally deployed across the enterprise.
These include the following.

Copyright 2005, Systinet Corp.

@ systinet”

Define and Enforce Application Interoperability Policies

An organization must define an interoperability architecture and policy to
manage all integration efforts. With Web services-based SOAs, the inter-
operability protocols of SOAR, WSDL and UDDI provide the core of this
architecture. The architecture and its policies must further define the pro-
tocols to meet higher-level interoperability requirements. To prevent a
point-to-point integration model from overtaking your SOA efforts, you
should define a reference architecture that supports services interoperat-
ing in a flexible and reusable fashion.

Transform Your IT Development Processes and Policies

SOA represents a way to drastically improve IT processes, especially in
application development. With solid architectural guidance, development
teams can create modular, component-based applications using Web
services design standards. You can enforce compliance to WS-l and
internal standards at design and runtime using available Web services
management (WSM) and SOA enforcement tools. Your Business
Services Registry is a key component for design-time enforcement,
allowing development teams and enterprise architects to clearly state and
review compliance for each service. With composite applications, the reg-
istry can streamline compliance reviews by providing a picture of the
standards compliance for each constituent service.

Define and Enforce Your Business Interoperability Policies

As your organization expands its services portfolio, you will increasingly
interact with other business services from customers, business partners
and other organizations within your enterprise. The resulting business
integration challenge will be easier to manage when your SOA defines a
policy for B2B interoperability and a strategy for leveraging industry
XML standards.

Monitor, Measure and Analyze Your SOA Service Network

As mentioned previously, SOA metrics should be defined early in your
SOA strategy and planning cycle. These metrics should help you deter-
mine the overall effectiveness of your SOA by answering the following

kinds of questions:

> Are the services leveraging one another in a symbiotic, networked
fashion?

> Are we getting the maximum interoperability and services reuse from our
SOA? If not, why not? Are policies being enforced at design and runtime?

> Do we have a truly interoperability-based SOA, or do we have islands
of business and Web services? How can we unite these services?

> Are our business services secure and reliable to the level required by
the business processes using them?

> Finally, have initial SOA business goals been met? How can perform-
ance be improved? If goals were not met, why not? What must be done?

Page 6 of 14

A Practical Guide to SOA for IT Architects

N

SOA Governance

SOA governance consists of the corporate, business and IT
processes and rules required to control the business success
of an SOA and Web services. SOA governance defines and
enforces the Web services policies needed to manage SOA
applications and data for business success.

Examples of SOA Governance
The SOA governance model will result in policies for services
reuse, IT compliance nd security.

Reuse: A reuse policy would describe technical and business
aspects of services reuse such as WSDL design conventions
and WS-I compliance for interoperability, as well as a review
process to ensure that existing services are used prior to
developing new ones.

Compliance: An SOA compliance policy would be a gover-
nance policy describing what internal and industry standards
will be followed for all services, whether internal or from exter-
nal providers.

Security: A security policy might specify what security stan-
dards and credentialing processes will be enforced during
services design and consumption, such as SAML, WS-
Security, XML signature, and others.

Copyright 2005, Systinet Corp.

@ systinet”

Creating Your SOA

Properly implemented, SOA is an excellent approach for managing
change—change of service owners, service implementations, provider-
consumer relationships and even entire business processes. The key to
managing change in an SOA is managing the lifecycle of constituent
services—what we call Business Service Lifecycle Management.

The business service lifecycle is a defined set of activities and procedures
that continuously support SOA business service development, deployment
and management. The cycle complements your software development life-
cycle and extends it for services runtime deployment and management. It
can also be tailored to meet the specifics of your approach.

For example, for some traditional development lifecycles, the architect
may define specific services and the policies around them during the plan
phase of the service lifecycle. In modern agile software development life-
cycles, a project team will define some basic policies for services during
the plan phase, and service interfaces and specific policies are defined as
part of the enable phase.

Consistent with SOA principles, the business service lifecycle recognizes
the need to achieve defined business outcomes. It acknowledges that there
are new and unique requirements to help an organization successfully
employ an SOA and ultimately manage dynamic business interoperability.

Many will recognize these steps as the way business is done and IT sys-
tems are developed today. With previous architectures focusing on
reusable service libraries, a major issue is the failure to define simple and
standard mechanisms for informing the application development commu-
nity of the available services and their interfaces. The robust publishing
and discovery model elevates the importance of sharing reusable services
and assuring that business analysts and developers can find the services
they need to implement business functionality. The publishing and discov-
ery steps are mandatory for successful SOA implementation and handle
the integration of design and runtime environments inherent in an SOA.

Planning

As in any development process, planning is critical—in this case, planning
the transition from Web services to reusable business services. Here are
some considerations:

Business Services and SOA Governance

Business services are Web services operating in an SOA, augmented
with the necessary compliance, governance, security and manageability
policies that enable enterprise-wide use and reuse.

Effective governance involves mapping corporate, business and IT poli-
cies to specific SOA business services, and then ensuring policy enforce-
ment. Storing policy compliance information in your Business Services
Registry precludes compliance issues by informing service producers and
consumers of their obligations before services are implemented.
Describing policies using WS-Policy assertions allows service endpoints
and management tools to further ensure compliance at runtime by disal-
lowing non-compliant uses of services.

Page 7 of 14

A Practical Guide to SOA for IT Architects

A clearly defined services lifecycle ensures that governance policies are
established and followed at each phase of service development. The servic-
es lifecycle infrastructure ensures proper implementation and operational
support during service enablement, publishing, discovery and management.

Architects determine policies for security, interoperability (such as WS-I),
data formats (such as FpML or ACORD), and other internal and external
processes and procedures.

SOA Metadata and Classification Management

The application of SOA metadata to fully describe services is essential to
ensure that you get the most visibility, productivity and reuse from your
SOA. Classifications and taxonomy modeling are a critical step in the
development of a robust SOA. You must identify the key metadata sur-
rounding your services and define taxonomies that represent the valid
classifications of services according to each metadata category.

A solid SOA defines clear taxonomies for services across multiple dimen-
sions. These dimensions can encompass technical constraints such as
standards compliance, organizational metadata such as business unit or
line of business, and regulatory compliance criteria such as HIPAA or
Sarbanes-Oxley standards. The Business Services Registry provides a
mechanism to define taxonomies, publish services with the proper classi-
fication, and discover services based on how services are classified.

Taxonomy modeling is similar to other typical data modeling, and you can
take an incremental approach to defining your taxonomies. Your taxono-

my model can also take advantage of the effort that has gone into devel-
oping your existing data, organizational and process models.

New SOA Component Requirements

An SOA requires new infrastructure, including a Web service enablement
of endpoints, a registry, Web service management, and security/identity
management. A key aspect of this infrastructure is the Business Services
Registry, which provides a centralized location for managing all the
descriptions of services and related SOA information. In fact, the
Business Services Registry provides the central point of SOA governance
to manage policies and drive enforcement at the services level, essential-
ly becoming the “system of record” for the SOA.

Enablement

SOA enablement is two-fold: the installation of new SOA infrastructure
and the process of developing standards-based business services. At its
most basic, the enabling infrastructure can be simplified as follows:

> Web services enablement of endpoints for service providers and consumers

» Standards-based Business Services Registry supporting governance
and life cycle management

> Supporting infrastructure such as Web services management, identity
management and service-oriented messaging services

Copyright 2005, Systinet Corp.

@ systinet”

Web Services Enablement of Providers and Consumers

For a service provider, enablement involves the core Web service enable-
ment, along with publishing business service definitions, descriptions and
policies to the Business Services Registry. It also involves some aspects
of service management. These include instrumenting source code to
gather metrics, updating service descriptions to assert policies, and track-
ing uses of the service to facilitate dependency analysis.

Like service provider enablement, service consumer enablement goes
beyond core Web service enablement to include approaches to service
discovery and policy negotiation. A service consumer must be able to dis-
cover providers using standard mechanisms such as UDDI.

Service consumers may also need to negotiate with service providers at either
the business or technical level, according to predefined, acceptable policies.
These policies may be described directly in the WSDL service description
using WS-Policy, or by querying metadata from within the registry.

Service consumers must be able to accommodate changes from service
providers, reliably and on demand. It is inevitable that the service provider will
need to be updated and maintained independently of the service consumer.

Business Services Registry

The Business Services Registry is the centerpiece of an SOA infrastruc-
ture, providing the single thread of visibility and control of all service inter-
operability activities and related information across the lifecycle. The reg-
istry should adhere to Web services standards such as UDDI. Given its
centrality in an SOA, the registry should provide functionality above and
beyond the UDDI standard to support advanced classification manage-
ment, security features, and mapping of SOA information such as WSDL
and XML schemas according to best practices. Since no two businesses
are exactly alike, the registry should provide the ability to configure and
customize its view of your SOA to support your policies and taxonomies.

Publishing

Publishing services in an SOA is a policy-driven process that in some
ways mirrors your software release process. The publishing process must
answer questions such as:

> Who is allowed to publish a service to the registry?
> What release procedures must be followed?

> How will various designs, standards and security policies be approved,
certified and enforced in the SOA?

These are all issues that are typically managed and controlled by a
Business Services Registry. Publishing is critical in the lifecycle because
Web services are not truly “business” services until they can be discov-
ered and shared by all SOA participants.

The registry must support diverse user communities, and your modeling
must take this diversity into account when developing classifications that
contextualize services for various audiences—developers, business ana-
lysts, IT managers and line-of-business management. For example, devel-

Page 8 of 14

A Practical Guide to SOA for IT Architects

opers might search for services based on the operations they provide or
the protocols they require. Business analysts may look for services based
on the document types they consume or business

keywords that define the purpose of the service.

The references and taxonomies used by one audience may not provide
the proper context and meaning for another. The registry’s ability to pro-
vide meaning and context to services in an SOA is critical to increasing
usage, supporting service discovery, and maintaining control of services in
the SOA.

The publishing process should also support clear workflows to ensure that
services are published only if they are compliant with your SOA policies.
The Business Services Registry should facilitate these workflows and allow
architects and managers to review services before they are made available
for broader reuse. Each workflow should include a step to ensure that the
service implements the standards asserted in the service registration.

Discovery

An SOA is predicated on the concept of discovery. The notion of reuse
for the purpose of optimizing agility and alignment of IT to business is
fundamental to an SOA.

Standards-based registries use the UDDI protocol to support the sharing
and discovery of services. The UDDI specification provides a flexible
approach to mapping all your business service classifications to the reg-
istry, ensuring standards-based discovery. A standards-based registry per-
mits your organization to leverage existing services and support the com-
position of multiple services to meet new business requirements. It facili-
tates service reuse while providing a foundation to accelerate time-to-
market for new business and IT functionality.

Management and Security
SOA management, or Web services management (WSM) solutions, pro-
vide control for an SOA. This includes:

» Management
Monitoring (e.g,, metric computation, service-level objective evaluation)
Automation (e.g, deploy, un-deploy and upgrade) Auditing and utilities
(e.g, alert notification and logging)

> Security
Message Integrity Message Confidentiality Single Message
Authentication

» Enforcement of policies

To be effective, an SOA deployment must include these management
and security capabilities. Some may be provided by your existing man-
agement infrastructure. For example, if your SOA enablement infrastruc-
ture supports SNMP, you can use your existing management console. If
you're IT infrastructure supports SSL with client-side certificates, you
may be able to use SSL to secure your messages.

Copyright 2005, Systinet Corp.

@ systinet”

However, the nature of SOA drives further management requirements.
SOA management is about managing and understanding the relation-
ships between interoperating business services, regardless of platform.
The textual nature of XML on-the-wire within your SOA suggests that
management tools allow visibility into message traffic, and the use of
standard messaging interfaces allows message traffic to be easily rerout-
ed through managed service-endpoints and on to their original service
destination. These managed endpoints can provide runtime policy
enforcement, dependency tracking and exception management.
Additionally, through monitoring services, interdependencies can be
determined automatically, providing visibility nd allowing change manage-
ment/impact analysis to be performed quickly and easily.

The textual nature of XML introduces new concerns for message securi-
ty. Messages can easily be intercepted from any network, but a text
based network makes the message payloads easier to interpret. To
secure message payloads, you can explore security both at the transport
level, e.g. by using SSL, and also at the message level using WS-Security
and the related XML Encryption and XML Signature. With these stan-
dards, you can secure messages directly within the XML payload using
public-key encryption and digital signatures.

After you place initial management and security infrastructure into your
SOA, you need to consider the evolution of service producers and con-
sumers. Since service producers and consumers evolve independently,
exception management is given a new importance. Exceptions generated
by changes in service versions or policies may be recoverable with minimal
intervention and without causing the business process to fail. With the
proper tools, business analysts can inspect the XML documents that trig-
ger exceptions and adjust their business processes without turning to IT.

The dynamic nature of SOA interoperability allows for on-demand recon-
figuration of various aspects of a deployment such as location, transport,
security and policy parameters beyond the exception-handling case. With
dynamic discovery, these parameters can be changed in the Business
Services Registry without making any changes to the services or the
business processes orchestrated with them.

As an architect, your goals for managing your SOA will differ from those
of business analysts and system operators. You are looking to assure
adherence to standards and policies, while the business analyst is looking
for business performance metrics, and the operations manager strives to
maintain service availability.

To provide the best total control of an SOA, WSM solutions must work
with a Business Services Registry. The registry also manages versioning
and new service releases by coordinating across the full lifecycle.

Analysis

The business service lifecycle includes the analysis, monitoring and feed-
back mechanisms that help optimize the SOA, and ultimately the business
processes it enables. These mechanisms provide a constant feedback
loop that allows you to refine your architecture based on information
about the status, performance, use and success of business services.
Your analysis tools can also provide impact and dependency analysis of
individual services or groupings of services, and reporting on a wide vari-
ety of issues such as reuse, policy violations or compliance reporting.

Page 9 of 14

A Practical Guide to SOA for IT Architects

Business Service Lifecycle Planner

The table below summarizes the business service lifecycle, requirements,
enabling infrastructure and relevant standards, as well as potential ven-

@ systinet”

dors of various solutions.

Phase Requirements / Activities SOA Infrastructure SOA Standards Example Vendors
Planning SOA governance & management Registry Corporate standards & policies Microsoft
Policy enforcement Security WSDL System Integrators
S0A metrics Management WSDM Systinet
Quality of service/ Governance WS-Policy
reliability/latency policies
Security policies
Taxonomy design
Enablement Business modeling SOAP-WS Server and runtimes BPELAWS AmberPoint
Corporate, business, IT governance Application servers WS-Addressing BEA
SOA infrastructure development Management and/or SOA network WS-I Basic Profile 1BM
Web services development Security proxies WS-Notification Microsoft
Infrastructure development WSDL, taxonomy, XML and other modeling tools WS-Eventing Oracle
ESB, SOA networks, EAl/message brokers WS-RM Salesforce
WS-Security SAP
XML, SOAP, WSDL Security vendors
Systinet
TIBCO
Publishing Business service approval Registry, taxonomy creation, content management upDI 1BM
Certification process Policy design Microsoft
Change management Process design Systinet
Registration process & management
Categorize services and create
taxonomies from service interface
Enrich service interfaces with policy-
related metadata
Discovery Find and invoke business services Registry upDI 1BM
Walk taxonomy trees Microsoft
Design time usage Systinet
Runtime usage
Configuration and change
Operational management
Introspect metadata
Management Operate and manage business services Registry upDI Actional
And Security Create, monitor and enforce Identity server, hardware/ software firewalls WS-DM AmberPoint
SLAs and other policy Management proxies and instrumentation tools WS-Security CA
Enforce security and identity AMerting systems HP
Control service provider access Discovery tools 1BM
Track and manage provider- Microsoft
consumer relationships Systinet
Create parameters to monitor and Reactivity
provision monitoring tools Netegrity
Create and change taxonomies Sun
Create and change service providers
Analysis Analyze performance Registry upDI Actional
SOA metrics management Management console WS-Policy assertion AmberPoint

Copyright 2005, Systinet Corp.

SOA performance analysis

Data mining/ analysis
Visibility solutions

Service Integrity

Page 10 of 14

A Practical Guide to SOA for IT Architects

Business Services Registries Enable Lifecycle
Management

The SOA business service lifecycle requires visibility, control and manage-
ment across all stages. This level of visibility and control can only be pro-
vided by a registry-based approach to SOA.

A Business Services Registry is the core infrastructure for the SOA, man-
aging the lifecycle of SOA services and paving the way to faster ROl for
Web services. The registry not only speeds the transition from Web servic-
es to reusable business services; it is the hub that connects all OA partici-
pants—providers, consumers, developers, customers, partners, business
executives, [T executives and more. The registry provides the pathway to
a business-driven SOA by improving the speed and control of:

» SOA deployment

> business services rollout and deployment
» internal business and IT SOA usage

» partner SOA usage

The Business Services Registry supports the entire service lifecycle and
enables the transition from initial Web services to business services, to
Dynamic Business Interoperability via an SOA.

The Evolution To SOA

The evolution to an SOA requires new thinking about service oriented
application design, the creation and reuse of business services that lever-
age existing enterprise applications, the lifecycle management of busi-
ness services, and the IT deployment roadmap for new SOA infrastruc-
ture. SOA provides the design approach for a new generation of modular,
standardized business services. The business service lifecycle provides
both the control and a logical way to map business and technology
requirements into an SOA model. A business-driven SOA strategy will
help focus on the goal of Dynamic Business Interoperability.

The SOA business service lifecycle helps clarify the service oriented
pathway; the Business Services Registry provides the visibility, manage-
ment and control of the SOA information. Both lead to Dynamic Business
Interoperability, dramatic business results and an agile IT.

Copyright 2005, Systinet Corp.

@ systinet”

Page 11 of 14

A Practical Guide to SOA for IT Architects

Appendix A: Web Services Enablement
Platforms

Examples of Web Services Enablement Platforms

Web services standards and technologies enjoy a unique level of industry
support and adoption. Web service enablement platforms are available for
most computing environments today, whether the goals are exposing main-
frame CICS as services or enabling SAP using NetWeaver or third-party
tools.

The speed and ease of enabling Web services are among the greatest
benefits of this approach. Below are some examples of Web services
enablement tools for various computing environments.

Packaged Applications:

> SAP NetWeaver allows SAP users to expose SAP functionality as
services as part of their end-user's SOA strategy.

> Salesforce.com’s Sforce allows end-users to customize, integrate and
extend Salesforce.com’s CRM solution to meet their business needs.

» Numerous other leading independent software vendors including BMC
Software, Cognos, Progress Software and FileNet have integrated
Web services functionality into the latest versions of their products.

Legacy Applications:

> Many third-party Web services enablement solutions, including prod-
ucts from Systinet, support legacy enablement for:

» Mainframe CICS, IMS
> Proprietary applications
> C/C++ systems

Strategic Business Applications:

> Amazon.com Merchant Network allows Amazon to extend its sales
processes to affiliates and others using its Web services enablement
framework. This is an example of “syndicating a process” to trading

partners.

» T-Mobile allows third-party content providers to offers new services to
handset users using a simple Web services integration framework

Application Platforms:

> Microsoft NET provides many tools and solutions for rapidly enabling
Web services within the .NET environment.

> The J2EE platform is supported by over 30 tools for Web services
enablement.

Copyright 2005, Systinet Corp.

@ systinet”

Middleware Applications:

> Message oriented middleware (MOM) vendors, including 1BM, TIBCO,
WebMethods, and SeeBeyond, have added Web services tools to
their products.

» Third party vendors, including Systinet, offer low-cost, reliable, stan-
dards-based solutions for extending existing MOM infrastructure to
support Web services.

Appendix B: SOA Defined

Service orientation is an approach to designing software systems. A serv-
ice-oriented architecture (SOA) is a system consisting of modular soft-
ware components with standardized component-access and usage inter-
faces that are independent of any specific platform or implementation
technology. More importantly, an SOA enables software components to
become standard services that can be invoked on demand, rather than
repeatedly designed and programmed. In SOA, a “service” is typically a
group of software components that together carry out a high-level func-
tion or business process, such as placing an order or making a credit
approval on a purchase. At its most basic, an SOA is simply a collection of
standardized services on a network that communicate with one another in
the context of a business process. This approach dramatically eases inte-
gration in heterogeneous environments and provides a major enhance-
ment in agility.

All services share some common characteristics:

> Services have interfaces that are platform or implementation-technolo-
gy independent. Services are exposed using standards-based, identical
interfaces that make them easy to use and reuse, and guarantee
dynamic interoperability.

> Services are “loosely coupled” Services can be created without any fore-
thought as to how or who will consume them. In addition, changes made
to the service implementation will have no ripple effect on the consumers.

> Services are “coarse grained!” Services focus on high-level business
processes using standard interfaces, and thus mask he underlying
technical and operational complexities of how a service is implemented.

> Services are modular. A service represents a discrete unit of business,
application or system functionality. Multiple services an be combined to
deliver more valuable services. This modular approach gives organiza-
tions great flexibility in system design. By reassembling services into
a new configuration, a business can create a new business service to
support a different business objective.

Page 12 of 14

A Practical Guide to SOA for IT Architects

Appendix C: Glossary

BPEL—Business Process Execution Language: an XML-based language
designed to enable task-sharing for a distributed computing or grid com-
puting environment, even across multiple organizations, using a combina-
tion of Web services.

Business Services—Web services operating in an SOA with the neces-
sary governance, policies and business taxonomies that enable business
customers, IT applications and data, business partners, and internal enter-
prise users to access them. Business services provide the visibility,
reusability, adaptability, and manageability for true business interoperabili-
ty using an SOA. Business services can be service producers, service
consumers or (most typically) both.

CICS—Customer Information Control System: an online transaction-pro-
cessing (OLTP) program from IBM that, together with the COBOL pro-
gramming language, has formed the most common set of tools for build-
ing customer transaction applications in the world of large enterprise
mainframe computing over the past several decades.

CRM—Customer Relationship Management: all aspects of interaction
between a company and its customer, whether sales or service related.

IMS—Information Management Software: IBM's premier transactional
and hierarchical database management system for critical online opera-
tional and e-business applications and data.

MOM—Message-Oriented Middleware: a specific class of middleware
that supports the exchange of general-purpose messages in a distributed
application environment.

OASIS—Organization for the Advancement of Structured Information
Standards: a not-for-profit, international consortium that drives the develop-
ment, convergence and adoption of e-business standards.

SAML—Security Assertion Markup Language: an XML-based framework
for exchanging security information.

Service Consumers—business services that consume service providers.
Typically, they discover, retrieve and introspect service information that
they obtain via a WSDL description obtained from a known URL or a
Business Services Registry. They are quite different from service
providers in many respects, including security and system usage require-
ments. Typical examples include Web services, Web users and applica-
tions, PC users and applications, and special devices (e.g, cell phones).

Service Instance—a concrete realization of a business service. An
instance is sometimes also called an “endpoint;’ which denotes a runtime
instantiation of a logical Web service, accessible via a particular technical
protocol and transport.

Copyright 2005, Systinet Corp.

@ systinet”

Service Owner—a system entity that provides a collection of services. A
service provider usually represents a business model and related
process(es), generally claiming ownership and management responsibili-
ties over its services. A service owner may host one or more Web servic-
es, which may be hosted on one or many physical machines.

Service Providers—business services that publish business service defi-
nitions, descriptions, information, and access control and authentication
rules. Typically, service providers will be categorized along a range of busi-
ness, functional and technical taxonomies based on a business model.
Examples include data marts/warehouses, business processes and com-
mercial off-the-shelf packaged applications.

SOA—Service Oriented Architecture: a simple software design approach
and system in which all software functions are modeled as modular com-
ponents and are implemented as platform and implementation technology
independent services that can be consumed over a network using stan-
dards-based interfaces.

SOA Governance—the organization and processes required to guide the
business success of an SOA and Web services. SOA governance defines
and enforces the Web services policies needed to manage SOA applica-
tions and data for business success.

SOA Lifecycle Management—an approach to continuously managing the
development, deployment and management of SOA business services
through a set of defined activities and processes including planning,
enablement, publishing, discovery, management and analysis of services.

UDDI-Universal Description, Discovery and Integration: an OASIS stan-
dard for Web services publishing and discovery using a service registry.

Web Services—a set of standard interoperability specifications for loosely
coupled, self-describing software functions accessed programmatically
across a network.

WSDL—Web Service Description Language: an XML format for describ-
ing network services as a set of endpoints operating on messages con-
taining either document-oriented or procedure-oriented information.

WS-1-Web Services Interoperability: an open, industry organization char-
tered to promote Web services interoperability across platforms, operating

systems and programming languages.WS-Security

XML—Extensible Markup Language: a simple, very flexible text format
derived from SGML (ISO 8879).

Page 13 of 14

A Practical Guide to SOA for IT Architects

About Systinet Corporation

Systinet provides the leading foundation for SOA governance and lifecy-
cle management. Founded in 2000, Systinet's award-winning, proven, and
standards-based products enable IT organizations to rapidly leverage
existing technology investments, provide interoperability between hetero-
geneous systems, and better align business processes with IT. Customers
receive the benefits of a simpler, faster, standards-based way to dramati-
cally improve IT responsiveness and technology asset reuse, while maxi-
mizing the ROI for SOA. Systinet's customer base of over 150 Global
2000 clients includes Amazon.com, BMC Software, Interwoven,
JPMorgan, Motorola, Defense Information Systems Agency, and SAIC.
Headquartered in Burlington, Massachusetts, Systinet is a privately held
company with over 100 employees.

To find out how Systinet can help your business, visit

http://www.systinet.com, call 1.781.362.1300, or email us at
sales@systinet.com.

Copyright 2005, Systinet Corp.

@ systinet”

Page 14 of 14

